Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
ASME 2022 International Mechanical Engineering Congress and Exposition, IMECE 2022 ; 8, 2022.
Article in English | Scopus | ID: covidwho-2248708

ABSTRACT

New Zealand and many countries gained heightened awareness of indoor air quality (IAQ) issues, and increased investment, according to the World Health Organization (WHO) guidelines, to improve their IAQ and reduce air pollution in commercial and residential buildings. Additionally, some countries have introduced new standards for indoor environments, such as the New Zealand "healthy homes” standard. At the same time, COVID-19 pandemic forced many people to spend much more time in indoor spaces, due to stay-at-home, or lockdown orders by governments. This increased attention on other aspects of indoor environmental quality, such as occupants' satisfaction with thermal comfort parameters, presents an additional parameter for research and in the development of standards. From a medical perspectives, infectious respiratory diseases, such as influenza or COVID-19, are transmitted by airborne droplets. In this work, we assess a Polyester Filter and UV light (PFUV) dehumidifier device performance in an office with two occupants (one uninfected and the other one infected with a disease with airborne transmission using computational fluid dynamics (CFD) approach. Two positions for locating the PFUV dehumidifier in an office with a scenario in which one person is exhaling infected air and the other occupant must inhale and exhale from the shared air. The CFD model illustrated the best position of the device to distribute the air velocity contours. Further, based on the CFD model which was validated via the IAQ and comfort kit (Testo 400) thermal comfort analysis showed that the room is slightly cold. Copyright © 2022 by ASME.

2.
Int J Refrig ; 145: 78-89, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2076200

ABSTRACT

The outbreak of the COVID-19 has affected all aspects of people's lives around the world. As air transmits the viruses, air-conditioning systems in buildings, surrounded environments, and public transport have a significant role in restricting the transmission of airborne pathogens. In this paper, a computational fluid dynamic (CFD) model is deployed to simulate the dispersion of the COVID-19 virus due to the coughing of a patient in a conference hall, and the effect of displacement of supply and return registers of the air conditioning system is investigated. A validated Eulerian-Lagrangian CFD model is used to simulate the airflow in the conference hall. The particles created by coughing are droplets of the patient's saliva that contain the virus. Three cases with different positions of supply and return registers have been compared. The simulation results show that case1 has the best performance; since after 80 s in case 1 that the inlet registers are in the longitudinal wall, the whole particles are removed from space. However, in other cases, some particles are still in space.

3.
Int J Environ Res Public Health ; 19(16)2022 08 11.
Article in English | MEDLINE | ID: covidwho-1987754

ABSTRACT

Awareness of indoor air quality (IAQ) in crowded places such as schools and offices has increased since 2020 due to the COVID-19 pandemic. In addition, countries' shifting away from containment and towards living with COVID-19 is expected to increase demand for risk mitigation via air-purification devices. In this work, we use Computational Fluid Dynamics (CFD) analysis to investigate the impact of adding an air-purification technology on airflow in an enclosed space. We model a Polyester Filter and UV light (PFUV) dehumidifier in an office with two occupants: one infected with an airborne infectious disease, such as COVID-19; and the other uninfected. We compare three cases where the infected occupant coughs: with no device, and with the device at two different orientations. We construct a CFD model using ANSYS® 2021 Fluent and the Discrete Phase Model (DPM) for the particle treatment. Thermal comfort is assessed using the Testo 400 IAQ and comfort kit. We find that both the device operation and the placement alter the airflow contours, significantly reducing the potential for the uninfected occupant to inhale the vapour expelled by the infected occupant, potentially impacting the likelihood of disease transmission. The device improved thermal comfort measured by Predicted Mean Vote (PMV), Predicted Percentage Dissatisfied (PPD).


Subject(s)
Air Pollution, Indoor , COVID-19 , Cough , Humans , Hydrodynamics , Pandemics
SELECTION OF CITATIONS
SEARCH DETAIL